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Abstract

We consider the problem of model selection and accounting for model uncertiuntv
in high-dimensional contingency tables, motivated by expert system applications. The
approach most used currently is a stepwise strategy guided by tests based on approxi.
mate asymptotic P-values leading to the selection of a single model; inference is then
conditional on the selected model. The sampling properties of such a strategy are
complex, and the failure to take account of model uncertainty leads to underestima-
tion of uncertainty about quantities of interest. In principle, a panacea is provided
by the standard Bayesian formalism which averages the posterior distributions of the
quantity of interest under each of the models, weighted by their posterior model prob.
abilities. However, this has not been used in practice because computing the posterior
model probabilities is hard and the number of models is very large (often greater than
loll).

We argue that the standacd Bayesian formalism is unsatisfactory and we propose
an alternative Bayesian approach that, we contend, takes full account of the true model
uncertainty by averaging over a much smaller set of models. An efficient search algo-
rithm is developed for finding these models. We consider two classes of models that
arise in expert systems: the recursive causal models and the decomposable log-linear
models. For each of these, we develop efficient ways of computing exact Bayes factors
and hence posterior model probabilities. For the decomposable log-linear models, this
is based on properties of chordal graphs and hyper Markov prior distributions and the
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resultant calculations can be carried out locally. The end product i, an o.eraI strat

egy for model selection and accounting for model uncertiu'nty that !earcheb eflienitl.)
through the very large cla.:ses of tnodels involved.

Three exanples are given. 'ite first two concern data wet! which hv,- Ltn aiAli 'yed
by several authors in the context of model selectioa. The third addre ,e a urulogci 2

diagnostic problem.

KEYWORDS: Chordal graph; Contingency tabl.e )ecomposable log-lim11er model. Lxp-tt
system; Hyper Ma-kov distribution; Recursive causal model.
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1 Introduction

Fruitful approaches to inference in high-dimensional contingency tables all involve choosing

a broad class of models to be considered and then comparing them on the basis of how well
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they predict the data. Typically, the model classes are huge ind inference iM the presence of

the many competing models is not easy.

Here we consider two classes of models: the recursive causal models of Kiveri et al.

(1984) and the decomposable log-linear models introduced by Goodman (19701 and Htaber-

man (1974). This work is motivated by applications in expert systems which uW a b.llef

network to represent knowledge and perform inference. Lauritzen and Spiegelhalter (19,S)

,,..e described a method tor constructing such belief networks. A recursive causal iiioded is

elicited from an "expert" in the form of an acyclic directed graph with nodes repr-senting

iandom variables and directed links representing conditional dependence assumptions: we

will refer to this as the "qualitative layer" of the model. Next, the joint distribution of the

random variables being modeled is elicited; this is the "quantitative layer-. Finally. through

a series of graphical and numerical operations, the recursive causal model is converted to a

decomposable, and hence graphical, log-linear model. We assume throughout that all links

in the graph corresponding to the recursive causal model are directed. It is important that

the required probabilities be elicited in the directed recursive framework, because elicitation

of jUoit distributions in the undirected decomposable framework is usually not feasible.

Potentially the most important advantage of constructing expert systems in this fwhiion

is the system's ability to modify itself as data becomes available. In a series of recent papers,

Spiegelhalter and Lauritzen (1990a,1990b), Dawid and Lauritzen (1989) and Spiegelhaltcr

and Cowell (1991) have addressed the issue of updating the quantitative layer of the model.

Building on this work, we address the issue of updating the qualitative layer-how can

the graphical structure itself be updated as data becomes available? If we succeed in our

objective we will have truly constructed an expert system which can learn.

Currently, tihe most used approach to model selection in contingency tables is a stepwise

one, adapted from stepwise regression by Goodman (1971); see also Bishop, Fienberg and

Holland (1975, Section 4.5 and Chapter 9). This consists of sequentially adding and dcleting

terms on the basis of approximate ;symptotic likelihood ratio tests, leading to the selection

of a single model. Inference about the quantities of interest is then made conditionally on

the selected model.

There are several difficulties with this approach. The sampling properties of the overall

strategy are complex because it involves multiple tests and, at least implicitly, the compar-

ison of non-nested models (Fenech and Westfall, 1988). The use of P-values themselves is

controversial, even when there are only two models to be compared, because of the so-called
"conflict between P-values and evidence" discussed by Berger and Seilke (1987) and Berger
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and Delampady (1987). One aspect of this is that tests based on P-vahles tend to reject

even apparently satisfactory models when the sample size is large; a draniatic example of

this was discussed b Rafter" (1986b). On the other hand, when the sample size is small

and the table sparse, the asymptotic approximations on which the P-values are ba-sed tend

to break down.

Perhaps most fundamentally, conditioning on a single selected miodel ignores iudel un.

certainty and so leads to underestimation of the uncertainty about the quantities of interest

This underestimation can be large, as was shown by Regal and i1ook (1991 ) in the contii-

gency table context and by Miller (1984) in the regression context. One bad consequence is

that it can lead to decisions that are too risky (tIodges, 1987).

In principle, the standard Bayesian formalism V,,o.Idvs a panacea for all these difficulties.

If A is the quantity of inter-st, such as a structural characteristic of the system being studieti.

a future observation, or the utility of a course of action, then its posterior distribution given

data D is
K

pr(A[ D) = pr(A I A1k, l))pr(M, k I) ()
k=1

This is an average of the posterior distributions under each of the models, weighted by their

posterior model probabilities. In equation M), l...... \K are the models considered and

ID) - pr(D I Mjk)pr(Mk)pr(Mk -D) = Z pr(D I AM)pr(Mi)' (2)

where

pr(DI Mfk) = Jpr(D I Ok, fk)pr(Ok fI A)d6k (3)

is the marginal likelihood of model Mk, 0k is the (vector) parameter of Al, pr(Ok I 1k) is the

prior distribution of 0k, pr(D I 0, Mk) is the likelihood, and pr(Mk) is the prior probability

of Ml.

However, this approach has not been adopted in practice. This appears to be because

(a) the posterior model probabilities pr(Mk I D) are hard to compute since they involve the

very high-dimensional integrals in equation (3), and (b) the number of models in the sum in

equation (1) is huge. For example, with just 10 variables (small by expert system standards)

there are approximately 4.2 x 1018 recursiv causal models and 1.9 x 1011 decomposab!e

models.

One might hope that most of the posterior probability would be accounted for by a small

number of models so that the sum in equation (1) would be well approximated by a small

number of terms. Unfortunately. this does not typically appear to be the case bec-ause,
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although a sr-all number of models do have much higher posterior probabilities than all

the others, the very many models with small posterior probabilities contribute substantially

to the sum. For example, Moulton (1991) repoited a regression example with 2" = 4096

models where about &.t)0 models were needed to account for 90% of the posterior probability.

We argue that the standard Bayesian formalism of equation (1) is flawed. Adopting

standard methods of scientific investigation, we show that accounting for the true riodel

uncertainty involves averaging over a much smaller set of models. We develop :;irp le and

efficient ways of computing the posterior model probLbilities for the two model classes consiu-

ered. Our approach is to take advantage of the graphical structure to calculate the required

probabilities very quickly, while representing prior opinion in an easily elicitable form. We

also describe an efficient algorithm for searching the very large model space.

Putting all this together gves us a simple and computationally efficient way of select.

ing the best models and accounting for model uncert,.nty in recursive causal models arid

decomposable log-linear models. To demonstrate the generality of our approach. our dis-

cussion will be in the context of conventional statistical model selection rather than expert

systems, although we will return to some expert system specific issues in Section 5. In Sec-

tion 2 we describe the principles underlying our approach to model selection. In Section 3

we apply those principles to the recursive causal models. while in Section I we consider the

decomposable models.

2 Model Selection Strategy

2.1 General Principles and Occam's Razor

We argue that equation (1) does not accurately represent model uncertainty. Science is an

iterative process in which competing models of reality are compared cn the 1 asis of how well

they predict what is observed; models that predict much less well than their competitors are

discarded. Most of the models in equation (1) have been discredited in the sense that they

predict the data far less well than the best models and so they should be discarded; there is

no uncertainty about this in any real sense. Hence they should not be included in equation

(1).

In our approach, if a model predicts the data far less well than the best model in the

class it will be discarded, so that initially we exclude from equation (1) those models not
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btlonging to the set {maxi Ipr(Mi ID)) < C}
A'= {Mk pr( ID) - ' (4)

for some constant C. The value of C used will depend on the context. In our examples we

used C = 20, by analogy with the popular .05 cutoff for P-values; Jeffreys (1961, Appendix

B) would suggest some number between 10 and 100, while Evett (1991) suggests a value of

1000 for forensic evidence in criminal cases.

Next we appeal to one of the most widely accepted norms of scientific investigation,

namely Occam's razor. Let E represent the evidence and pr(tifE) the probability of a

specified hypothesis H given the evidence E. Occam's razor states tiiai if:

pr(H,IE) = pr(112 IE) = ... = pr(HlWE)

for hypotheses E,,..., Hk, then the simplest among H, ... , Ik is to be preferred (Kotz and

Johnson, 1985).

Thus we also exclude from equation (1) models belonging to the set

6 = Mk : A E A, A1 C Ah, p r(MI DI 5
I pr(Mk D) 1

and equation (1) is replaced by

pr(AI D) = ZM&E4 pr(A I Mk, D)pr(D I Mk)pr(Mk) (6)
wM. pr(D I Mk)pr(Ak)

where

A = A'\B. (7)

This greatly reduces the number of models in the sum in equation (1) and hence simplifies

the model uncertainty problem a great deal. Note that our argument is not an approximation

adopted for computational convenience, but rather an exact solution based on the way science

works. Note also that our approach in equation (6) will not necessarily give an answer close

to that given by equation (1) because, due to the very large number of models in the class,

the models discarded may have a large total posterior probability FiM4A pr(Mk I D), even

though each individual model discarded has a very small posterior probability.

The problem thus reduces to finding the set A, and we now outline a computational

strategy for doing this.
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Figure 1: Model Seletion Strategy - A Simp1, Example

2.2 Model Selection Strategy

Our approach to model selection is a variant of the greedy-search algorithm. The essentials of
the approach are the same for the recursive causal models and the decomposable models and
could readily be applied to more general graphical models. Posterior model probabilities are

used as a metric to guide the search. The strategy proceeds out into model space away from

the opening set of models, comparing models via ratios of posterior model probabilities in a

series of nested comparisons. The extent of the search i easily controlled and will depen-' on

the resources available for specific applications. In what foilows, M0 will denote the smaller

of the two models being compared and M, will denote the larger. In fact, Mo and Mi will

differ by just one link throughout. We now describe the elements of our approach.

Edwards and Havrinek (1985) proposed a model search procedure which is based on the

following rules:

* If a model is rejected, then all its submodels are rejected.

* If a model is accepted, then all models that includp it are considered accepted. (We
use the term accepted in place of the more correct non-rejected.)

These rules5 were first suggested by Gabriel (1969). He coined the term coherence for testing
procedures satisfying these rules. However, Gabriel's arguments are predicated on the use

of a monotone metric for model testing. A test statistic Z(M) is said to be monotone if

M, C Mj = Z(M,) > Z(M,). Likelihood ratio test statistics are monotone but posterior

model probabilities clearly are not. We now argue that, in this context, the second rule is

inappropriate.
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Consider the (undirected) example in Figure 1. Suppose that we start with the saturated

model [ABC] of Figure 1(a), and that when we compare it with the model of conditional

independence [AC][BC] of Figure l(b), we reject the smaller model decisively. TIhen we

are precisely rejecting the conditional independence of A and B given C. This conditional

independence also holds in all the submodels of [AC][BC] and so we reject all of those as

well, inclading the model [A][BC] of Figure 1(c). Thus, if we reject a model. we reject a2l

its submodels, which is the first of the two rules of Edwards and Hlavr nek (1985) above.

Now, working in the opposite direction, suppose that we start with the model [A1[C301

of Figure 1(c) Comparing it with [AC][BC] let us suppose that we decisively reject the

smaller model. We are precisely rejecting the marginal independence of A in favour of the

conditional independence of A and B given C. However, we have learned nothing about the

model [ABC]. Indeed, its probability could Le even lower than that of [A][BC]! It follows

that the second rule of Edwards and Havrinek is inappropriate in the present context.

2.3 Occam's Window

A crucial aspect of the strategy concerns the interpretation of the ratio of posterior model

probabilities when comparing two models. Again we appeal to Occam's razor which, trans-

lated into the language of model fitting, we implement as follows:

" If the log posterior odds is positive, i.e., the data provides evidence for the smaller

model, then we reject M, and consider M0. We could generalize this by requiring the

log posterior odds to be greater thaii sor,e pc. itiv,- ronO ant OP before rejecting M,.

* If the log posterior odds is small and negative, providing evidence against the smaller

model which is not "very strong" (Jeffreys, 1961), then we consider both models.

• If the log posterior odds is large and negative, i.e., smaller than OL - log(C) where

C is defined by equation (7), we reject M0 and consider All.

Thus there are three possible actions following each comparison-see Figure 2.

Now that the various elements of the strategy are in place, we outline the search tech-

nique. The search can proceed in two directions: "Up" from each starting model by adding

links, or "Down" from each starting model by dropping links. When starting from a non-

saturated, non-empty model, we first execute the "Down" algorithm. Then we execute the

"Up" algorithm, using the models trom the iiown' algorithm as a sta iLing point. Experi-

ence to date suggests that the ordering of these operations has little impact on the final set of
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Strong Evidence for All Evidence for M0

Figure 2: Occam's Window: Interpreting the log posterior odds

models. Let A and C be subsets of model space M, where A denotes the set of -acceptable

models and C denotes the models under consideration. For both algorithms, we begin with

A = 0 and C =set of starting models.

BGMS-AD. U7"n Algorithm

1. Select a model Ml fron. _1

2. C+- C - Mand -; -A .4

3. Select a submodel Mo of Ml by removing a link from Ml

4. Compute B = log p,(Mo ID)
pr(MID)

5. If B>OR thenA4-A-M and if Mo C,C C+Afo

6. If OL B OR then if Mo C,C-C±Mo

7. If there are more submodels of M, go to 3 Akccen in For

BGMS-IUp Algorithm

1. Select a model Mf fromi C

2. C 4-C--Mand A 4-A+M .

3. Select a supermodel M, of M by adding a link to M
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4. Compute B = log pr(',1D)

5. If B < OL then A - A - Al and if M, C.C -- C + Ali

6. If OL !S B < OR then if M, V C,C , C + %I,

7. If there are more supermodels of 11, go to 3

8. If C# go to I

Upon termination, A contains the set of po-entially acc eptable models. 1,iiailv. .,

remove all the models which satisfy equation (5), where I is replaced by exi,(0(4). atid t hose

models Mk for which
maxi{pr(Mi I D)} >C

pr(%Ik D)
A now contains the acceptable models.

3 The Directed Case-Recursive Causal Model Se-
lection

3.1 Implementation

Implementation for the recursive causal models proceeds in a straightforward fashion. ('on-

sider a recursive causal model for a set of random variables X.,v e'. The model is

represented by a directed graph where each variable in V is represented bv a node in the

graph. For each variable v E V we define pa(v) to be the set of parent nodes of z, i.e. nodes

tw for which there exists a directed link from w to v. The assumptions of the model imply

that the joint distribution of X,, v E V. which we denote pr(V), is given by

pr(V) = H pr(vlpa(v)).
vEV

In early implementations, pr(v~pa(v)) was assumed to be fully specified for all v by the

expert/data analyst. Spiegelhalter and Lauritzen (1990a) introduced a parametrisation for

pr(vlpa(v)) whereby the relationship between a node ?, and its parents pa(7') is fully specified

by V, C O. This leads to a conditional distribution for V:

Pr(VI0) = I r(i-,Pa(v),0,).

where 0 is a general parameter with components 0,.
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Spiegelhalter and Lauritzen (1990a) make two key assumptions which greatly siminplify

subsequent analysis. The first a-ssumption is that of global zndtpnnd.,, whertbv the pa

rameters 0, are assumed mutually indepo ndent a priori. This assumption alone, allow, us to

calculate the likelihood for a single case:

pr, ') = J pr(, 0)dO = f-pr(,,'!a( v,',9 ipr(O, =d-, ,pr, ?- pat 'r

where
pr(,,L~pa(v,)) = / r(,pa('), O )pr(O ,.)dO,

J he second assumption is that of local 1i 7dc&rct whereby the paranwt er 0, Lrt' aL it,

components corresponding to the elements of the state space of pa(u,). "h,'se Corpo(lICnts

are assumed to be mutually independent a prio'i.

Now consider a conditional probability distribution pr(0,lpa( ' K ,0<) = 0 for a specific

state pa(t,)+ of pa(t'). We assume that 0+ has a Dirichlet distribution EP(.\, A" where k

is the number of states of z,. Then we can show that

pr(t, jpa(,,)+ ) = A+/y A. +

If we observe v to be in state x,, and the parent state to be )a(t,)+ , we have

.. - D[A + ..... A+  + 1 ... .

This provides a straightforward method for sequentially calculating the ratios of posterior

model probabilities required for the model selection strategy. The elicitation of the required

Dirichlet priors is feasible provided the cardinality of pa(?,) is not too large. Computer-

based methods for eliciting Dirichlet prior distributions have been described by Chaloner

and Duncan (1987). If pa(7,) is not observed the updating becomes more complex--see

Spiegelhalter and Lauritzen (1990a,1990b) for details.

A considerable computational saving is obtained by noting that the sequential updating

of the distribution of 0, depends on the states of t and pa(v) only. Therefore the likelihood

for all qualitative layers (graphs) having the same set pa(,) of parent nodes of v, will have

identical contributions from v. For example, consider the two recursive causal models of

Figure 3. When calculating the ikelihood for the model of Figure 3(a), we store the likeli-

hood of each node/parent combination separately. Now when subsequently calculating the

likelihood for the model of Figure 3(b), oply the likelihood for node B requires recalculation

as the sets of parent nodes of A and C have not changed.
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(a) ib)

Figure 3: Simplifying the Likelihood ('omputations

T. implement the model selection strategy describe(I in Sction 2 for th recur.ve causal

models an ord.,-ing of the nodes must be pre-specified by the- expert/data analyst. If I,

precedes v, in the ordering, then a directed link from u*, to v., is prohibited. In certain

applications it may be possible to search over all possible orderings but this will typically

not be the case. Pearl's IC-algorithm (Pearl and Verma. 1991) induces dire ted -causal"

structures from data. An ordering of the nodes is not required, but for each pair of nodes 1,

and vI, the algorithm does involve searching amongst all subsets of V - {,,. r, } for outsets

between vi and v. (sets which when conditioned on. render t', and I,, independent.) Cooper

and Herskovits (1991) provide a review of other approaches.

3.2 Examples

3.2.1 Coronary Heart Disease Risk Factors

Firstly we consider a data set which has been previously analysed by Edwards and tlavranek

(1985). The data concerns 1,841 men cross-classified according to six coronary heart disease

risk factors. The data is reproduced in Table 1. The risk factors are as follows: A. smoking:

B, strenuous mental work; C, strenuous physical work; D, systolic blood pressure: E. ratio

of 13 and Qt proteins; F, family anamnesis of coronary heart disease.

Their likelihood ratio-based model selection strategy selected two graphical log-linear

models: [AC][ADE][BC][BE[F] which is not decomposable and therefore is not equivalent

to any recursive causal model, and [ACEJ[ADE][BC][F] which is decomposable. A striking

feature of both models is the independence of F, family anamnesis. The models are shown

in Figure 4.
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Table 1: Risk factors for Coronary lfeart Disea:W

B No Yes

A No Yes No Yes
F E D C

Negative < 3 < 140 No 44 40 112 67
Yes 129 145 12 23

> 140 No 35 12 80 33
Yes 109 67 7 9

> 3 < 140 No 23 32 70 66
Yes 50 80 7 13

> 140 No 24 25 73 57
Yes 51 63 7 16

Positive < 3 < 140 No 5 7 21 9
Yes 9 17 1 4

> 140 No 4 3 11 8
Yes 14 17 5 2

>3 < 140 No 7 3 14 14
Yes 9 16 2 3

> 140 No 4 0 i3 11
Yes 5 14 4 4

(a) (b)

Figure 4: Models Selected by Edwards and Havrinek

13



(a) (b)

(c) (d)

Figure 5: Coronary Heart Disease: Recursive Causal Models Selected

To implement the Bayesian graphical model selection procedure, we started from the

saturated model and used the "Down" algorithm only (starting from the empty model and

using the "Up" algorithm produced the same set of models). All qualitative structures were

assumed equally likely a priori. We adopted a standard Jeffreys prior density throughout. A

natural partial ordering of the variables suggests itself: F, (B, C), A, (E, D). B, F or C could

not be "influenced" by the other factors and must be exogenous, although the ordering of

B and C is unclear. Similarly, D or E could hardly influence A, although the ordering of E

and D is unclear. The four corresponding complete orderings produced strong evidence for

the precedence of E over D, and indifference as to the ordering of B and C. Several further

orderings were tried, but this "natural" ordering resulted in the models with highest posterior

probabilities. The selected models are shown in Figure 5 and their posterior probabilities in

Table 2.

Two models, those shown in Figures 5(a) and 5(b), account for most of the posterior

probability. They are rather similar in that both contain the C - B, C - A, A - E, E - D

and A - D links. The main difference between them lies in the way they describe the effect of

strenuous mental work (B) and strenuous physical work (C) on the ratio of /3 and a proteins

14



Table 2: Coronary Heart Disease: Posterior Model Probabilities for Recursive Causal Models

Figure Log marginal Posterior
likelihood probability %

5(a) -6723.0 52
5(b) -6723.3 40
5(c) -6725.4 5
5(d) -6725.7 4

(E). Model 5(a) says that C affects E both directly and indirectly via A. whereas model

5(b) says that the effect of C on E is solely indirect, being mediated by B and A. There

is also some uncertainty about the presence of a link from smoking (A) to systolic blood

pressure (D). There is decisive evidence in favour of the marginal independence of family

anamnesis of coronary heart disease (F).

The four models selected correspond very closely to the models of Figure 4 above. We

note that the A - D link (smoking and systolic blood pressure) is present in both of the

models of Figure 4 and also in models (a) and (b) of Figure 5, but it is absent from models (c)

and (d) of Figure 5. In fact, the exact test for zero partial association of A and D reported

by Edwards and Havrinek (1985) had a significance level of 0.04 which was the largest of

any of the links accepted at the 5% level.

3.2.2 Women and Mathematics

Our second example concerns a survey which was reported in Fowlkes et al. (1988) concerning

the attitudes of New Jersey high-school students towards mathematics. The data has been

further analysed by Upton (1991). A toti' of 1190 students in eight schools took part in the

survey. Data on six dichotomous variables was collected:

A. Lecture Attendance; attended or did not attend;

B. Sex; female or male;

C. School Type; suburban or urban;

D. "I'll need mathematics in my future work"; agree or disagree;

E. Subject Preference; maths/science or liberal arts;

15



Figure 6: Women and Mathematics: Recursive Causal Model Selected

F. Future Plans; college or job;

Upton (1991) reports that a model selection procedure based on the AIC criterion

(Akaike, 1973) selects [ABCEJ[CDFJ[BCD][DEF] while a procedure based on the BIC cri-

terion (Raftery, 1986a) selects the much simpler [A][BE][CE][CF][BD][DE][DF]. Clearly

an important difference between these two models is the treatment of A.

The Bayesian graphical model selection procedure started from the empty model and

used the "Up" algorithm. It is clear that B (Sex) cannot be influenced by other variables

and must be exogenous. Initially it .vas also assumed that C (School Type) was exogenous.

An exhaustive search over all consequent orderings produced the single model shown in

Figure 6.

The selected model is similar to the model selected by Upton's BIC procedure. The

model selected by AIC clearly over-fits the data (Upton, 1991). It is of interest to note the

direction of the link from D to F. Both Upton (1991) and Fowlkes et al. (1988) treat D as

a response variable and Upton's path diagram shows a directed link from F to D. However,

the data provides strong evidence that the direction of the influence is from D to F, i.e. that

students' attitudes towards mathematics influence their future plans, rather than the other
way around. The ability of the selected model to predict is unaffected by the direction of

the E - D link.

Further analysis removed the restriction that C be exogenous. The data now provides

some support for the presence of a link from E to C although its interpretation is somewhat

unclear.
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4 The Undirected Case-Decomposable Model Selec-

tion

4.1 Implementation

To implement the strategy for the decomposable models, we rely heavily on a recent funda-

mental paper by Dawid and Lauritzen (1989), hereafter DL. We consider three issues which

are specific to model selection for the decomposable models. Firstly, how should we add

and remove links whilst efficiently ensuring that all the models created are decomposable?

Secondly, given any two decomposable models M and M ° , is it possible to generate M° from

M, adding or removing only one edge at a time but staying within the class of decomposable

models? Finally, how do we calculate the required posterior model probabilities?

The first two issues are addressed by the following two lemmas:

LEMMA 1 Let G = (V, E) be a chordal graph with vertices V and edges E and let G' = (V, E')

be a chordal subgraph of g with exactly one edge, e, less. Then e is contained in exactly one

clique of G.

Proof. This follows from Lemma 3 of Frydenberg and Lauritzen (1989).

Therefore the model selection strategy must remove only links which are members of a

single clique. When adding links, the strategy must not create any chordless four-cycles.

LEMMA 2 Let G = (V, E) and g' = (V, E') both be chordal graphs such that E' C E and Q'
has k less edges than G. Then there is an increasing sequence 9' = Go C ... C Gk = G of

chordal graphs that differ by exactly one edge.

Proof. This follows from Lemma 5 of Frydenberg and Lauritzen (1989).

Now we address the calculation of the posterior model probabilities. Following DL, we

consider a decomposable model M for a set of random variables X,, v E V. Let I denote the

set of possible configurations of X. Let the quantitative layer of M be specified by 0. Then

the distribution of 0 is determined by the clique marginal probability tables Bc = (Oc)cEC
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where C denotes the set of cliques of M:

f~)=ll¢c cOc(ic) i Zrises Os( i s) E

S denotes the system of separators in an arbitrary perfect ordering of C.

For each clique C E C, let

,C = (Ac(ic)),rc

be a given table of arbitrary positive numbers and let D(Ac) denote the Dirichlet distribution

for Oc with density

7r(OcIAc) oC [1 Oc(ic) Acc)-1 ,
icEr c

where 5_c Oc(ic) = 1 and O(ic) > 0.
Now let us suppose that the collection of specifications V(Ac), C E C are constructed in

such a way that for any two cliques C and D in C we have:

Ac(icnD) = AD(iCnD).

Then DL show that there exists a unique strong hyper Markov distribution for 0 over M

that has density D(Ac) for all C E C. DL call this the hyper Dirichlet distribution for 0.

A distribution for 0 is strong hyper Markov if and only if OAjB,OBIA and OAnB are mutually

independent whenever A n B is complete and separates A from B. It follows that by letting

A0 = Ei 7 A, the likelihood for a single case is given by:

pr(v) = A(Hses ,)

From Ler-ima 3 we have that updating can be carried out one clique at a time:

LEMMA 3 If the prior distribution C(0) is strong hyper Markov, the posterior distribution

of 0 is the unique hyper Markov distribution C* specified by the clique-marginal distributions

{ £C : C E C}, where C is the posterior distribution of Oc based on its prior distribution Cc

and the clique-specific data Xc = xc.

Proof. This is Corollary 9 of DL.

The posterior distribution for Oc given data nc from the marginal table corresponding

to clique C is V(Ac + nc).
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(a) (b)

Figure 7: Coronary Heart Disease: Decomposable Models Selected

Consider the Bayes factor
Bol = pr(DIMo)

pr(DIM 1 )

where Mo and M1 are decomposable and Mo is obtained from M1 by deleting one edge e

linking u with v. From Lemma 1 we have that t is contained in a single clique, C say, of MI.

Let C, = C - {v),C,, = C - {u}, Co = C - {u, v}. Then DL show that the Bayes factor is

given by:

B01 = pc. (Dc)pc (Dc.)
pc,(Dc.)pc(Dc)

Thus, the required decomposable model comparisons can be carried out very rapidly with

calculations local to single cliques.

4.2 Examples

4.2.1 Coronary Heart Disease Risk Factors

Firstly we consider again the coronary heart disease risk factor data of Edwards and Havrinek

(1985) which is shown in Table 1. We note that the model of Figure 4(a) which was selected

by the Edwards and Havrinek procedure is not decomposable and hence will not be selected

by our procedure.

The selection procedure started from the saturated model and used the "Down" algo-

rithm. All qualitative structures were assumed equally likely a priori. A r+-,aV-' Jefr--"'s

prior was adopted for Oc, C E C. Just two models were selected and they are shown in Figure

7. Starting from the empty model and using the "Up" algorithm resulted in the same two

models. The corresponding posterior probabilities are shown in Table 3.
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Table 3: Coronary Heart Disease: Posterior Model Probabilities for Decomposable Models

Figure Model Log marginal Posterior
likelihood probability

7(a) [BC][ACEf[ADE][FT -6719.5 92
7(b) [ABCJ[ABE][ADE][F -6721.9 8

Table 4: Women and Mathematics: Posterior Model Probabilities for Decomposable Models

Figure Model Log marginal Posterior
likelihood probability 9o

8(a) [A][BDE][CDF] -4492.4 75
8(b) [A][BDE][DF][CF] -4493.5 25

The model of Figure 7(a) was also selected by the directed model selection procedure and
by Edwards and Havrinek (1985). The model of Figure 7(b) is essentially a decomposable

version of the directed model of Figure 5(b) and Edwards and Havrinek's model of Figure

4(a). It is interesting to note that a model identical to Figure 7(a) except for the A - D link
falls just outside Occam's window in the undirected selection.

Over all, the model selection exercise indicates that there is very strong evidence for the
B - C, A - C, A - E and D - E links, with evidence for the A - D link that is strong

but somewhat less so. There is also some evidence for the C - E and B - E links, but it

seems that one of these alone is enough to describe the data, and it is not fully clear which

one is better. Again, as in the directed case, there is decisive evidence for the marginal

independence of F.

4.2.2 Women and Mathematics

We consider again the survey d-ta previously analysed by Fowlkes et al. (1988) and Upton

(1991). We note the models selected in Upton (1991) are not graphical and hence will
not be selected by our procedure. The procedure adopted was identical to that adopted
for the example of Section 4.9 1, The two models selected are shown in Figure 8 and the
corresponding posterior probabilities are shown in Table 4.

As in the directed case, the selected models are close to the models selected by the BIC
model selection procedure carried out by Upton (1991). However there is uncertainty about
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(a) (b)

Figure 8: Women and Mathematics: Decomposable Models Selected

the C - D link (School Type and "I'll need mathematics in my future work") which is not

apparent in Upton's analysis. The data strongly supports the marginal independence of A.

4.2.3 Scrotal Swellings

Our final example concerns the diagnosis of scrotal swellings. Data on 299 patients was

gathered at the Meath Hospital, Dublin, Ireland under the supervision of Mr. M.R. Butler.

We consider a cross-classification of the patients according to one lisease class, Hernia (H),

and 7 binary indicants as follows: A, possible to get above the swelling; B, swelling tran-

silluminates; C, swelling separate from testes; D, positive valsalva/stand test; E, tender;

F, pain; G, evidence of other urinary tract infections. The data is reproduced in Table

5. There are 28 possible links to be considered by the selection procedure in this example.

In the absence of prior expert opinion, computation times can be prohibitive. Clearly, if

the starting point for the selection procedure were close to the models for which the data

provides evidence, this problem could be overcome. With this objective we adopted the

following heuristic procedure: firstly, Bayes factors for each of the 28 links are calculated by

comparing the saturated model with the 28 sub-models generated by removing single links.

Links for which the data provides evidence in this manner are then used as a starting point

for the 6lection procedure (if the model thus constructed is not decomposable, some of the

links may be removed or additional ones may be added.) The starting model is shown in

Figure 9.

Now the "Up" algorithm is executed, followed by the "Down" algorithm (or vice versa).

Note that if the starting links are badly chosen, the complete procedure has the opportunity

to remove them, although in this example, the final model contains all the links from the
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Table 5: Scrotal Swelling data

Indicants
Hernia A B C D E F G Count

N N N N N Y Y N 1
N Y N N N N N N 16
N Y N N N N Y N 3
N Y N N N Y Y N 5!
N Y N N N Y Y Y 17
N YN Y N N N N 30
N Y N Y N N N Y 1
N Y N Y N N Y N 3
N Y N Y N Y NN 1
N Y N Y N Y Y N 20
N Y N Y N Y Y Y 4
N YN Y Y N N N 36
N Y N Y Y N Y N 3
N Y Y N N N N N 38
N Y Y N N N N Y 1
N Y Y N N N Y N 3
N Y Y N N Y Y N 3
N Y Y Y N N N N 21
N Y Y Y N Y Y N 2
Y N N Y Y N N N 39
Y N N Y Y N Y N 5
Y Y N Y Y N NN 1

HE

A

Figure 9: Starting Model for Scrotal S-.celling Example
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(a)

(b)

Figure 10: Scrotal Swellings: Decomposable Models Selected

starting model. Two models were selected by this procedure and they are shown in Figure

10. The corresponding posterior probabilities are shown in Table 6.

The result of primary interest here is the importance of A (possible to get above swelling)

and D (valsalva/stand test) with respect to Hernia diagnosis. Both indicants can be estab-

lished through simple procedures at physical examination. The only real model uncertainty

which is exhibited ccncerns the relationship between C (swelling separate from testes) and

E (tender). Analysis of further cross-classifications extracted from this database also yield

similarly sparse models.

Table 6: Scrotal Swellings: Posterior Model Probabilities for Decomposable Models

Figure Model Log marginal Posterior
likelihood probability %

8(a) [AH][DH][BDE][CDE][EF][EG] -806.2 75
8(b) [AH][DH](BDEI[CDI[EF][EG -807.3 25
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(a) (b)

Figure 11: Over-parametrisation of the Dirichlet Prior

5 Expert Systems

As discussed in the introduction, model updating for expert system applications car be

carried out in either the recursive causal model framework or the undirected decomposable

framework. However, while the decomposable model selection strategy of Section 4 can be

efficiently implemented and avoids the computational problems associated with orderings

in the directed models, direct elicitation of the required Dirichlet distributions, D(Ac), will

typically be intractable. In this section we outline a simple procedure for eliciting the required

priors. This had previously been a barrier to the application of the approach of DL. We also

address briefly the use of prior model probabilities to control the search in very large model

spaces.

5.1 Elicitation for Decomposable Model Selection

Our objective is to use the initial recursive causal model as a framework in which to elicit the
quantitative layer and ensure that the resultant prior distribution is hyper Dirichlet. We note

that for both the recursive causal and the decomposable model selection strategies, the hyper

Dirichlet framework provides a straightforward mechanism for evolving prior distributions

as links are added and deleted.

Consider a simple recursive causal model with two binary variables as shown in Figure

1 ,(a). This model is decomposable and the corresponding undirected representation is given

in Figure 11(b).

Using the approach outlined in Section 3, the model of Figure 11(a) would require the
elicitation of prior Dirichlet distributions for pr(BIA),pr(BIA) and pr(A) with a total of 6

parameters. The model of Figure 11(b) however has only one clique {A, B} and its prior hy-

per Dirichlet distribution has just 4 parameters. In general, the Dirichlet prior representation

considered in Section 3 is over-parametrised relative to the hyper Dirichlet distribution.
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01 A

7T E3

Figure 12: Lauritzen and Spiegelhalter's Dyspnoea Example

Our approach is to regard the parameters AvpNV ) as "equivalent prior samples" which are

elicited subject to constraints which ensure consistency. The implied equivalent prior sample

for A satisfies the independence relationships of the recursive causal model and sp-cifies the

complete hyper Dirichlet distribution. Marginalising onto each clique C E C provides the

clique prior distributions.

Thus for the example of Figure 11, the equivalent prior sample is an unconstrained

two-by-two table. Having elicited a Dirichlet prior for pr(A), there are only two degrees

of freedom remaining for the prior distributions of pr(BIA) and pr(BIA). Effectively the

size ot the equivalent prior sample and its breakdown between A and A is fixed by the

elicitation of the prior for pr(A), and only one further parameter is now required for each of

pr(BIA) and pr(BIA). We envisage software which would display all three prior distributions

simultaneously, and maintain the required constraints interactively.

Since for all v E V, {v U pa(v)} C C' for some C E C, implementation of the procedure

in more general models is straightforward. We consider a fictitious example previously

considered by Lauritzen and Spiegelhalter (1988) and provide a detailed description of the

elicitation procedure. The (elicited) recursive causal model is shown in Figure 12.

Elicitation of the hyper Dirichlet prior and the marginal prior distributions for the cliques

of the corresponding decomposable model proceeds as follows:

1. Elicit distributions for pr(a), pr(rja).

Degrees of freedom : 4
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2. Elicit distribution for pr(t r, A). The marginal distribution of pr(7r ha-s alrt-ady betij

specified in 1. Furthermore the model implies r -A.

Degrees of freedom : 5

3. Elicit distribution for pr(flt ). The marginal distribution of pr( 'I hits alreadv ben

specified in 2.

Degrees of Freedom : 2

4. Elicit distribution for pr(,Ala). The marginal distribution of pr( A hws alreadv beeI

specified in 2.

Degrees of Freedom : 2

5. Eli,:it distribution for pr(31a). The marginal distribution of pr(a) has already been

specified in 4.

Degrees of Freedom : 2

5a. Since the model implies AL,3!o, we have that:

pr(A. a)pr( 3, a)
pr(. , 3, a) = p~'pr(ey)

and hence we derive the distribution of pr(k.,.a) and the marginal distribution of

pr(, 0)-

5b. Since the model implies e 3A, we have that:

pr(,3, A) - pr(c. A)pr(3, A)
pr(A)

and hence we derive the distribution of pr((, 3, A) and the marginal distribution of
pr(,E, 3J .

6. Elicit distribution for pr(blf, 3 ).

Degrees of Freedom : 4
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5.2 Model Priors

In the examples considered above, the prior model probabilities pr(M) were assumed equal

(Cooper and Herskovits, 1991, also assume that models are equally likely a priori). In general

this can be unrealistic and may also be expensive and we will want to penalise the search

strategy as it moves further away from the model(s) provided by the expert(s). Ideally one

would elicit prior probabilities for all possible qualitative structures from the expert but this

will be feasible only in trivial cases.

For models with fewer than 15 to 20 nodes, prior model probabilities may be approxi-

mated by eliciting prior probabilities for the presence of every possible link and assuming

that the links are mutually independent, as follows: Let C = (P U CA denote the set of all

possible links for the nodes of model A, where Ep denotes the set of links which are present

in model M and CA denotes the absent links. For every link e E C we elicit pr(e), the prior

probability that link e is included in A!. The prior model probability is then approximated

by

pr(M) cx J1 pr(e) j (1 - pr(e)).
eEtp eECA

Prior link probabilities from multiple experts are treated as independent sources of informa-

tion and are simply multiplied together to give pooled prior model probabilities. Clearly,

the contribution from each expert could be weighted.

For applications involving a larger number of nodes or where the elicitation of link prob-

abilities is not possible, we could assume that the "evidence" in favour of each link included

by the expert(s) in the elicited qualitative structure(s) is "substantial" or "strong" but not
"very strong" or "decisive" (Jeffreys, 1961). For example, we could assume that the evidence

in favour of an included link lies at the center of Occam's window corresponding to a prior

link probability for all e E Ep of

1
pr(e) =

I + exp(° - 1'°)

Similarly, the prior 'ink probabilities for e E EA are given by

exp(OL+OR
pr(e) = 1 2I + exp(NO)"

In the directed case it may be possible to construct a prior distribution on the space of

orderings-see Critchlow (1985) for further discussion.
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6 Discussion

We have outlined an overall strategy for model selection and accounting for model uncertainty

in two important classes of models for high-dimensional contingency tables. This involves a

redefinition of the Bayesian model uncertainty formalism, an efficient way of computing exact

Bayes factors that exploits the graphical structure, and an algorithm for quickly searching

through the very large model classes involved. The resulting procedure is quite efficient:

for the example of Section 4.2.1, approximately 3,000 model comparisons per minute can be

carried out on a Sun IPC.

There is a considerable literature on model selection for multidimensional contingency

tables; this is generally concerned with the selection of a single "best" model. Most of it is

based on the asymptotic properties of goodness-of-fit statistics (Wermuth (1976), Havranek

(1984), Whittaker (1984), Edwards and Havrinek (1985) or Fowlkes et al. (1988)). There

are also approaches based on information criteria and discrepancy measures (Gokhale and

Kullback, 1978; Sakamoto, 1984; Linhart and Zucchini, 1986). A recent review is provided

by Upton (1991) who advocates the use of the BIC statistic. The calculation of Bayes factors

for contingency table models has been considered by Spiegelhalter and Smith (1982), Raftery

(1986a, 1988), Spiegelhalter and Lauritzen (1990a) and Spiegelhalter and Cowell (1991).

Pearl and Verma (1991) and Glymour el al. (1987) have proposed, strntgies for recovering

causal structure from data. While these authors' objectives differ from ours, their procedures

for selecting directed graphical structures have much in common with our recursive causal

model selection strategy.

Cooper and Herskovits (1991) and Anderson et al. (1991) have examined model selection

in the context of probabilistic expert systems. In both cases, model selection is based solely

on data analysis and the incorporatio; of prior expert opinion is not considered. Cooper

and Herskovits (1991) outline a Baye. in strategy which seeks out the "best" recursive

causal model for the qualitative layer, w -re "best" is taken to mean the single model with

maximum probability. The algorithm s with a model with no links and at each stage

adds the directed link which most increa he model probability. The user must pre-specify

an ordering of the nodes. Anderson et 1991) carry out their search in the undirected

graphical model framework using a meth troduced by Kreiner (1987). The difficulties

with large sparse tables mentioned above voided by using exact tests when comparing

models.

While we believe that the methods we pr ie provide a workable approach to qualita-
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tive updating in expert systems, some issues remain. Spiegelhalter and Lauritzen (1990a)
and other authors have expressed concerns about automatically updating the qualitative

structure without reference to the domain expert. Such concerns need to be addressed in
the context of real expert systems. Extension of the methods to include the more general

graphical models of Wermuth and Lauritzen (1990) and Edwards (1990) will also be im-

portant for expert system applications. Missing data will frequently be a problem and we

are currently exploring a number of techniques for the incorporation of missing data in the

model selection strategy.
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P-values leading to the selection of a single model; inference is then conditional on the
selected model. The sampling properties of such a strategy are complex, and the failure to
take account of model uncertainty leads to underestimation of uncertainty about quantities
of interest. In principle, a panacea is provided by the standard Bayesian formalism which
averages the posterior distributions of the quantity of interest under each of the models,
weighted by their posterior model probabilities. However, this has not been used in practice
because computing the posterior model probabilities is hard and the number of models is
very large (often greater than 10"1).

We argue that the standard Bayesian formalism is unsatisfactory and we propose an
alternative Bayesian approach that, we contend, takes full account of the true model un-
certainty by averaging over a much smaller set of models. An efficient search algorithm is
developed for finding these models. We consider two classes of models that arise in expert
systems: the recursive causal mcdels and the decomposable log-linear models. For each of
these, we develop efficient ways of computing exact Bayes factors and hence posterior model
probabilities. For the decomposable log-linear models, this is based on properties of chordal
graphs and hyper Markov prior distributions and the resultant calculations can be carried
out locally. The end product is an overall strategy for model selection and accounting for
model uncertainty that searches efficiently through the very large classes of models involved.

Three examples are given. The first two concern data sets which have been analysed by
several authors in the context of model selection. The third addresses a urological diagnostic
problem.
KEYWORDS: Chordal graph; Contingency table; Decomposable log-linear model; Expert
system; Hyper Markov distribution; Recursive causal model.


